Evaluation/BinaryClassificationEvaluatorExample
Machine Learning
Binary Classification Evaluator
20 Evaluation Metrics for Binary Classification
The Example:
evaluation/BinaryClassificationEvaluatorExample
Binary Classification Evaluator
Description

Binary Classification Evaluator calculates the evaluation metrics for binary classification. The input data has rawPrediction, label, and an optional weight column. The rawPrediction can be of type double (binary 0/1 prediction, or probability of label 1) or of type vector (length-2 vector of raw predictions, scores, or label probabilities). The output may contain different metrics defined by the parameter MetricsNames.
Prerequisites
- JDK 11
- Maven 3.9.9
- Flink 1.17.0
BinaryClassificationEvaluatorExample.java
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.ml.examples.evaluation;
import org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluator;
import org.apache.flink.ml.evaluation.binaryclassification.BinaryClassificationEvaluatorParams;
import org.apache.flink.ml.linalg.Vectors;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
/**
* Simple program that creates a BinaryClassificationEvaluator instance and uses it for evaluation.
*/
public class BinaryClassificationEvaluatorExample {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
// Generates input data.
DataStream<Row> inputStream =
env.fromElements(
Row.of(1.0, Vectors.dense(0.1, 0.9)),
Row.of(1.0, Vectors.dense(0.2, 0.8)),
Row.of(1.0, Vectors.dense(0.3, 0.7)),
Row.of(0.0, Vectors.dense(0.25, 0.75)),
Row.of(0.0, Vectors.dense(0.4, 0.6)),
Row.of(1.0, Vectors.dense(0.35, 0.65)),
Row.of(1.0, Vectors.dense(0.45, 0.55)),
Row.of(0.0, Vectors.dense(0.6, 0.4)),
Row.of(0.0, Vectors.dense(0.7, 0.3)),
Row.of(1.0, Vectors.dense(0.65, 0.35)),
Row.of(0.0, Vectors.dense(0.8, 0.2)),
Row.of(1.0, Vectors.dense(0.9, 0.1)));
Table inputTable = tEnv.fromDataStream(inputStream).as("label", "rawPrediction");
// Creates a BinaryClassificationEvaluator object and initializes its parameters.
BinaryClassificationEvaluator evaluator =
new BinaryClassificationEvaluator()
.setMetricsNames(
BinaryClassificationEvaluatorParams.AREA_UNDER_PR,
BinaryClassificationEvaluatorParams.KS,
BinaryClassificationEvaluatorParams.AREA_UNDER_ROC);
// Uses the BinaryClassificationEvaluator object for evaluations.
Table outputTable = evaluator.transform(inputTable)[0];
// Extracts and displays the results.
Row evaluationResult = outputTable.execute().collect().next();
System.out.printf(
"Area under the precision-recall curve: %s\n",
evaluationResult.getField(BinaryClassificationEvaluatorParams.AREA_UNDER_PR));
System.out.printf(
"Area under the receiver operating characteristic curve: %s\n",
evaluationResult.getField(BinaryClassificationEvaluatorParams.AREA_UNDER_ROC));
System.out.printf(
"Kolmogorov-Smirnov value: %s\n",
evaluationResult.getField(BinaryClassificationEvaluatorParams.KS));
}
}
Run
Build the Examples
# https://github.com/apache/flink-ml
mvn clean package -DskipTests
Copy
flink-ml-examples-1.17-2.4-SNAPSHOT.jar
flink-ml-uber-1.17-2.4-SNAPSHOT.jar
statefun-flink-core-3.2.0.jar
to
flink-1.17.0/lib.
Start local cluster (Flink 1.17.0):
./bin/start-cluster.sh
Run
BinaryClassificationEvaluatorExample:
./bin/flink run -c org.apache.flink.ml.examples.evaluation.BinaryClassificationEvaluatorExample ./lib/flink-ml-uber-1.17-2.4-SNAPSHOT.jar ./lib/statefun-flink-core-3.2.0.jar ./lib/flink-ml-examples-1.17-2.4-SNAPSHOT.jar
Open
http://localhost:8081

Output
Job has been submitted with JobID bfc18a82376e6b603778db697ac5f628
Area under the precision-recall curve: 0.7691481137909708
Area under the receiver operating characteristic curve: 0.6571428571428571
Kolmogorov-Smirnov value: 0.3714285714285714